Science Facts

Why Megalodon Went Extinct? – Causes & Facts

Megalodon Extinction

The megalodon first inhabited the oceans of planet Earth around 23 million years ago. They varied in size, but studies suggest that, on average, a female meg could be between 45 and 59 feet long. This range varies widely because scientists need to extrapolate the size based on teeth and jaw fragments found in the fossil record. At this point, a full megalodon skeleton has not been found. Adult megalodons had no predators because of their massive body size. The shark’s main prey was small whales.

Megalodons roamed every ocean of the world, although they stayed away from the polar regions where the water would be too cold. The largest predatory shark species alive today is the great white. The largest great white ever recorded was around 36 feet long. It makes it 20 feet shorter than the megalodon. They outcompeted other predators for about 20 million years and stayed at the top of the food chain for that entire time. Their size, razor-sharp teeth, and speed allowed them to hunt and kill prey with deadly efficiency. So, what caused the Megalodon to go extinct? Why isn’t this incredibly successful killing machine ruling over the oceans today?

Why megalodon went extinct?

Megalodon lived all over the world, from the Netherlands to New Zealand. For more than 10 million years, it was at the top of its game as the oceans’ apex predator until 2.6 million years ago, when it went extinct. Megalodon disappeared entirely from the fossil record, just as the Pliocene epoch gave way to the Pleistocene. There’s also proof of its extinction in the composition of marine life. So, what happened to the largest shark in history?

It turns out that while Megalodon may have been the biggest shark that ever swam, it would eventually be defeated by the greatest. Megalodon was the biggest, scariest shark in a family of enormous, dangerous sharks. It belongs to the diverse order of sharks known as Lamniformes, including sand tigers, goblins, threshers, and the Great White.

When Megalodon was first described in 1835, scientists thought its big, serrated, blade-like teeth looked so much like those of the Great White. That Megalodon was initially placed in the same family. Based on features around the base of its massive teeth, most experts think it was probably in a separate family whose members are all now extinct. They are called Otodontidae, also known as the Mega-Toothed sharks.

Megalodon teeth
Megalodon teeth

One of the oldest and smallest of the group of Megatooths that gave rise to Megalodon was a shark known as Otodus obliquus. They lived in the Early Eocene, nearly 20 million years before Megalodon appeared on the scene. Some scientists think Megalodon belonged to this same genus, Otodus. While others assign it to another genus of extinct sharks called Carcharocles. Either way, Megalodon was the largest of all the Megatooths, first showing up in the fossil record about 23 million years ago.

So, how and why did it get so huge? Megalodon’s massive size was linked to the size of its prey. And both were shaped by forces much bigger than themselves. These external forces began at the end of the Mesozoicinitially placed when plate tectonics caused the uplift of mountains in North America and Asia. The weathering of these growing mountain ranges pumped massive amounts of nutrient-rich sediment into the oceans. That was increasing the productivity of ecosystems near the shore.

Marine mammals like whales, dolphins, and seals all have pretty high-fat contents, making them a nutritious, high-calorie snack for any predator that can catch them. And as the marine mammals grew over time, so did the sharks. Over about 20 million years, marine mammals and the line of Megatooth sharks that led to Megalodon doubled in size! Megalodon, in particular, started to grow fast.

Fossils of newborn megalodon are found in places like Panama. It shows that they were about 2 to 3 meters long, half the size of a modern great white shark, and about one and a half times as large as their ancestor Otodus obliquus! These massive baby sharks grew like weeds. This because shark vertebrae show rings of their growth, just like tree rings. And these rings show that Megalodon babies grew almost twice as quickly as Otodus obliquus, reaching their maximum length at around 25 years old.

So, getting bigger over time and getting bigger faster probably helped Megalodon keep up in the ongoing size race with the marine mammals they hunted. Their teeth have been found stuck in the ribs of many unidentified whale species, as well as the Piscobalaena. The size was a very useful adaptation for the giant sharks until it wasn’t. So 2.6 million years ago, Megalodon disappeared. There are a couple of potential reasons for this:

  • Survival in the ice-ages.
  • Volcanic activity.
  • Genetic diversity & biodiversity.
  • Saltier low-level ocean.
  • Big size, less food.
  • Food web competitor.
  • Supernova radiation.

Survival in the ice-ages

Between 3 and 5 million years ago, the climate began to change on planet Earth. The world began to cool as it entered the epoch known as the Pliocene. As global temperatures dropped, the oceans were affected. One significant change that occurred as temperatures cooled was that the sea levels began to drop. It happens during ice ages and periods of cooling because the water of the oceans gets trapped in ice and glaciers. This temperature change could have affected Megalodon directly, or it could have impacted its food source. That’s because climate change led to a restructuring of how and where whales lived.

As the climate shifted, more productive environments with more food began to take shape closer to the poles. So whales started to spend a lot more time there and became more migratory. Maybe the problem for Megalodon was that its prey started moving to where the water was colder. For a long time, scientists thought this might have been what did in the world’s biggest shark.

In 2016, a group of researchers led by Dr. Catalina Pimiento decided to test that hypothesis. Specifically, they tested the assumption that Megalodon couldn’t live in cold water. Pimiento and her team used a climate forecasting model to recreate ocean temperatures during the Pliocene and Miocene. And by compared those temperatures to where Megalodon had lived. They found that while the shark preferred water from about 12 to 27 degrees Celsius, its fossils were still found in places where the water was as cold as 1 degree!

So Megalodon probably was okay with colder water. It makes sense because many large sharks today are mesothermic. They can keep their bodies a little warmer than the surrounding water temperature. It helps them stay active even in colder waters.

Due to volcanic activity

As the water gets converted into its solid form, it is removed from the oceans. It causes the overall sea level to drop. The dropping of the global sea level wouldn’t have been a problem for megalodon if that was the only change that occurred. But when the sea level dropped, new land started to form that had previously been underwater. During the Pliocene, the Isthmus of Panama began to take shape. The collision of tectonic plates in the area caused volcanic activity. That resulted in the formation of the mountains that now stretch from North to South America.

The emergence of this new land that connected the Americas had a huge impact on the oceans’ animals. The land that would become Central America had been underwater for millions of years. It means that there was nothing blocking marine species from crossing between what would become the Atlantic and Pacific Oceans near the equator.

Genetic diversity & biodiversity

Once the access between the Americas was blocked off by land, many species were stuck on the continents. Some of the megalodon’s prey might have been separated from them. Ocean currents and the movement of nutrients in the oceans began to shift once the equatorial connection between the oceans was impeded. This would have caused species to migrate to new areas. If they could not adjust to the new environment, they would go extinct.

The currents and nutrients that once flowed between the Americas would have been abruptly brought to a halt. Without these nutrients, biodiversity would drop. This change would have a domino effect on all species living throughout the oceans. Nutrients would no longer be where they once were, and entire ecosystems would have vanished. This alone would have caused mass extinctions of aquatic organisms, leaving room for new species to evolve.

Even if this lowering of ocean levels, and the blockage between the oceans, did not directly cause megalodon to go vanish. It most likely had an impact on their prey. Since megalodon was large and slow to reproduce, it filled one specific niche: apex predator. If the environment suddenly changed, it was unlikely that megalodon had the genetic diversity to adapt to a new environment with less prey.

Before the change in the environment of the Pliocene, the oceans were filled with large marine animals. Many of these animals ate krill or small fish like the baleen whales of today. This meant that there was an abundance of prey for megalodon to hunt. However, organisms such as toothless walruses, aquatic sloths, and dwarf baleen whales did not survive in the new environment after the climate shift. Slowly, but surely the megalodon’s variety of food was diminished. This is where the real problem for megalodon came in.

Saltier low-level ocean

Another impact of the lowering of ocean levels is that the oceans become saltier. As more and more water is trapped in ice and glaciers, the salt to water ratio in the ocean changes. The salt does not get trapped with the water, so salt levels remain constant while water levels decrease. It causes an increase in salinity throughout parts of the oceans. The difference in saltiness would have shifted the ocean currents and nutrient cycles evermore. In fact, this change in salinity is one of the main reasons the ocean conveyor belt of today.

All of these changes to the oceans would have meant the environment that the megalodon had been so successful in for millions of years was now different. It is very difficult for large specialist predators to adapt to changes in their environment. Think about what is happening in the arctic right now to polar bears. They are highly specialized for the environment they evolved in. But if the ice continues to melt and the global temperature rises, they will go extinct. The polar bear species just do not have enough genetic diversity to succeed in a warmer environment.

Big size, less food

As the environment changed, marine diversity diminished for a while before natural selection. It caused new species to evolve and thrive. Unfortunately, this would have taken thousands and thousands of years that the megalodon did not have. With less biodiversity and animals to eat, all predators in the ocean would need to compete for similar food sources. The prey that megalodon once thrived on would have diminished. It meant that either they had to compete for a different food source or starve to death.

The disappearance of Megalodon seems to coincide with two big, important changes in the animal kingdom. The first was the appearance of new predators that Megalodon had to compete with. In the Late Miocene, another adversary shows up in the fossil record, the earliest ancestor of the Great White Shark, Carcharodon hubbelli. This shark was a direct competitor with Megalodon, as proven by its tooth marks that have been found in fossils of the same whale species.

A few million years later, in the early Pliocene, the first fossils appear of the modern great white, Carcharodon carcharias. In addition to competing with newer, more agile sharks like these, some of Megalodon’s most important prey, namely, whales, were on the decline. Toward the end of the Pliocene, the number of whales dramatically decreased from about 60 to about 40.

Many of these species were filter feeders and fed on krill and other organisms, which ate microscopic algae called diatoms. And starting around 3 million years ago, the oceans began to experience a severe drop in diatom diversity. It’s not 100% clear why this happened. But it might relate to changes in ocean circulation that took place when North and South America finally came together. Water could no longer circulate between the Pacific and the Atlantic.

Regardless of the reason, fewer diatoms meant fewer krill, which in turn meant fewer whales. And with less food, Megalodon had to compete even harder with the smaller, faster great white shark. Being bigger is great. It gives the advantage of having access to a different food group. But when it no longer does, it just means it requires more food to survive.

This is why, 2.6 million years ago, the very last of the Megalodon disappeared from the fossil record. The absence of the Megalodon may have had a big impact on the world’s oceans. In the past couple million years, great white sharks and Orcas have taken over apex predator roles. But these much smaller carnivores couldn’t hunt the larger whales that Megalodon was likely able to eat.

For instance, modern Great Whites frequently eat dolphins half their size. The 18-meter Megalodon ate whales that were as big as 9 meters. After Megalodon went extinct, the size of whales exploded. During the Pleistocene, the waters grew colder. And the new, improved productivity at the poles meant diatoms bounced back. That whales were able to become twice as big as the biggest whales of the Pliocene.

This is why the blue whale, the largest animal our planet has ever seen, appeared in the fossil record only recently, less than 2 million years ago. Without 18-meter sharks swimming around, the oceans could finally host 25-meter whales. So, Megalodon and its ancestors had a great run.

Over 30 million years, they became larger to eat larger marine mammals. But when those mammals started to disappear, Megalodon didn’t make the evolutionary cut. It’s worth noting that today’s biggest Great White Sharks are about a meter longer than their ancestors were in the Miocene. And they grow a little faster when they’re young, too, just like Megalodon did.

Food-web competitor

Changing of climate most likely contributed to the extinction of the species. Scientists now believe there was one main culprit that drove the nail into the coffin of the megalodon. At around the same time as megalodon went extinct, a new apex predator had just started to make its appearance: the great white shark. Carcharodon carcharias, or the great white shark, appeared around the same time as the megalodon species began to decline. It would seem this new species of shark could outcompete for the megalodon. The smaller size of great whites allowed them to catch and eat the smaller prey, which was more abundant after the climate shift.

The ability to eat many different species, other than just small whales, gave the great whites an advantage. Not only did the great white have a wider variety of food it could choose from, but the smaller body size worked in its favor. Since the megalodon had such a massive body, it needed to stay in relatively warm waters to maintain its body temperature.

Sharks are ectotherms meaning that they don’t regulate their internal body temperature. But instead, rely on factors such as sunlight and muscle movement to increase the temperature of their bodies. The smaller bodies of the great white sharks meant they could venture into cooler waters since they had less body mass to keep warm. Their muscles did not need to work quite as hard as megalodon to keep their body temperature up.

Therefore, they didn’t need as much energy from food as their larger cousins either. It was also likely that great whites hunted some of the same prey as megalodon. Perhaps the great whites targeted the young of the species that megalodon was hunting. The great white sharks were by no means trying to outcompete and cause the megalodon to go disappear.

The great white shark’s success most likely played a role in the extinction of the once-great megalodon. Scientists also think that the evolution of other smaller shark species could have put pressure on the megalodons. For example, tiger sharks that lived during the same time as the megalodon and in very similar environments may have contributed to the larger shark’s demise. It has been suggested that great whites and tiger sharks may have fed on megalodon young that had not grown to their full size yet. It caused even fewer numbers of the species to reach maturity.

Supernova radiation

Some astronomers suggest that a supernova may have contributed to the extinction of the largest sharks that ever lived. The claim is that a nearby star went supernova, enveloping the Earth in harmful muon radiation. This radiation would have been harmful to many species. But ones that reproduce slowly, like the megalodon, would have been affected much more drastically. It because of the build-up of mutations and lack of genetic diversity in the species.

Scientists thought Megalodon disappear, which contains high amounts of an iron isotope called iron-60. This isotope could have only come to earth by way of a supernova. Or the explosion caused by the death of a star. However, the consensus is that the stellar explosion may have been partly responsible for the mass extinction of marine animals at the time.

Last words

All of these factors may have played a role in the extinction of megalodon. It took nearly 30 million years for the mega-toothed sharks to reach the enormous size of Megalodon. A slow transformation took place as whales, and other marine mammals slowly grew in size. But whales today are already giant and face very few predators. It leaves the niche of super-shark wide open. So it just might be that the Great White Shark could become the Megalodon of the future. And that giant sharks might patrol our oceans once again.


More Articles:


Sources:

“Otodus (Megaselachus) megalodon (Agassiz, 1837)”.
Eastman, C. R. (1904). Maryland Geological Survey.
Cappetta, H. (1987). “Mesozoic and Cenozoic Elasmobranchii”. Handbook of Paleoichthyology.
“Bibliography and Catalogue of the Fossil Vertebrata of North America”.
“A new elusive otodontid shark (Lamniformes: Otodontidae) from the lower Miocene, and comments on the taxonomy of otodontid genera, including the ‘megatoothed’ clade”.
Shimada, Kenshu (2019). “The size of the megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), revisited”.
“Giant ‘megalodon’ shark extinct earlier than previously thought”.

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button