How Did Plants Become Carnivorous?


More than 35 million years ago, in the Eocene Epoch, in a warm coastal forest near the Baltic Sea, the resin of a conifer tree dripped onto the narrow, pointed leaves of a plant below. Over time, that resin hardened into amber, trapping bits of the plant.

The tiny leaf fragments belong to the same plant family as the modern genus Roridula half a centimeter in length. Those plants are found only in southwestern South Africa, the Cape Floristic Region. Their family was much more widespread during the Eocene Epoch. They’re carnivorous! It makes these tiny leaves encased in amber the best fossil evidence.

Nepenthes rajah is the largest carnivorous plant species. Although this is the largest carnivorous plant, many more species are found worldwide. They have evolved into many different forms developing their unique ways of catching prey. Plants are defined by their ability to make their food. How and why did these plants take such a different evolutionary pathway?

Carnivory has evolved at least nine times independently in plants and plants that aren’t closely related. So it looks like something keeps driving plants to this seemingly extreme lifestyle. How and why does botanical carnivory keep evolving? It turns out that sunlight, water, and nutrients aren’t there when most plants need basic things.

Some plants can adapt in unexpected ways to make sure they thrive. After a decade, Charles Darwin published an entire book about them in 1875. It would take another hundred-plus years before scientists would propose the definition of what counts as a carnivorous plant that’s often used today.

How did plants become carnivorous? (Evolution)

Here is a general overview of how plants have become carnivorous:

Nutrient-Poor Environments: Many carnivorous plants grow in habitats with nutrient-poor soil, such as bogs, marshes, and other wetlands. These environments lack sufficient nitrogen, phosphorus, and other essential nutrients for plant growth.

Trapping Mechanisms: Carnivorous plants have evolved specialized structures to capture and digest prey. Different species have developed various trapping mechanisms, including:

a. Pitfall Traps: Plants like pitcher plants (Nepenthes, Sarracenia) have modified leaves that form a deep, pitcher-shaped structure filled with digestive enzymes or fluid. Insects are attracted to the scent or coloration and fall into the pitchers, where they are digested.

b. Snap Traps: Venus flytraps (Dionaea muscipula) have leaves with hinged lobes that snap shut when triggered by an insect. The leaves contain sensitive trigger hairs that initiate the closure, trapping the prey inside.

c. Sticky Traps: Sundews (Drosera) and butterworts (Pinguicula) have leaves covered in sticky hairs or glands. When an insect lands on the leaves, it becomes stuck in the adhesive substance, and the plant then releases enzymes to digest the prey.

Digestion and Nutrient Absorption: Once prey is captured, carnivorous plants produce and secrete digestive enzymes to break down the proteins and other organic matter. They then absorb the released nutrients, primarily nitrogen, and phosphorus, through their specialized leaves or traps.

Genetic Adaptations: Carnivorous plants have undergone genetic adaptations to develop their unique traits. These adaptations involve changes in gene expression, such as the upregulation of genes responsible for producing digestive enzymes or the evolution of specialized structures like trigger hairs or sticky glands.

Convergent Evolution: It’s important to note that carnivory has evolved independently in different plant lineages multiple times. Various plant families, including Nepenthaceae, Sarraceniaceae, Droseraceae, and Lentibulariaceae, have produced carnivorous species. This suggests that similar ecological pressures have led to the evolution of carnivorous traits in different lineages.

Many types of carnivorous plants have very different methods of trapping their prey. Many of them are not even related. Carnivory in plants has evolved separately on other occasions. Even pitcher plants are made up of multiple plants that have evolved their liquid-filled traps multiple times. Cephalotus follicularis is a pitcher plant found in Australia and is more closely related to the star fruit than any in Southeast Asia.

All of the plants have different methods of catching their prey. The evolutionary process of developing their traps may have been different. But the reasons behind why they evolved the traps are the same. Although they are called carnivorous plants, this isn’t correct because they aren’t getting any energy from their insects. They can still photosynthesize like any other plant. They digest animals for nutrients.

Carnivorous plants grow in water-clogged mossy or very acidic soil low in nutrients and have become carnivorous to supplement their poor diets. Growing in these nutrient desert environments comes with benefits, as it is hard for other plants to grow in these areas.

So the carnivorous plants have low competition and won’t get overgrown. Over time this has forced them to get their nutrients from other sources to survive and reap the benefits. Unfortunately, the wet boggy environments forced carnivorous plants to evolve.

There are essentially two things that a plant has to do to be considered carnivorous.

  • First, it has to be able to take in nutrients from dead prey on its surfaces or trapped inside it. That prey is usually insects, though sometimes it includes small vertebrates like the northern pitcher plants observed consuming salamanders. By definition, doing this has to give the plant an advantage in growing or reproducing. It’s not enough for the plant to have defenses that can kill an animal trying to snack on it. It also has to get those animals’ nutrients.
  • Second, the plant needs at least one adaptation that actively lures in, catches, or digests its prey.

Doing at least one of these things and absorbing the nutrients makes a carnivorous plant. The living relatives of that fossil plant are preserved in amber trap arthropods, but their sticky secretions can’t digest them. Instead, the trapped prey attracts insects in the genus Pameridea, which don’t get stuck to the plant.

The insects then eat the trapped arthropods and poop on the plant, absorbing the nitrogen from their poop! So, these plants get a mutualist to do the work of digestion for them. But they still benefit from the death of their prey. Some botanists count them among the carnivorous species.

Many plants alive today meet the carnivory criteria, from about 580 to more than 800 species. Carnivorous plants are found on every continent except Antarctica. Based on molecular clock methods, they appear to have evolved between 95 million and 1.9 million years ago. There wasn’t one origin of carnivorous plants.

For example, a key genetic change in carnivory evolution occurred in a common ancestor of Venus flytraps and sundews that lived about 60 million years ago. Meanwhile, North and South American pitcher plants originated around 48 million years ago.

The youngest botanical carnivores appear to be two bromeliad species native to parts of northern South America that evolved around 1.9 million years ago. That means botanical carnivory is an example of convergent evolution. The organisms that aren’t closely related develop similar adaptations independently in response to similar environmental pressures.

Now, over millions of years and across hundreds of species, plants have developed five different types of traps, most of them many separate times. Traps can be passive. If prey falls into them and can’t escape, or active if the plant moves to catch its prey.

Pitfall traps are the standard passive trap used by pitcher plants and bromeliads. Prey lands on the plant’s slippery surface and slides into a pool of digestive juice. Then there are flypaper traps, which sound like prey becomes stuck in a sticky substance produced by the plant’s leaves. These traps can be passive or active.

For example, sundews have moving sticky tentacles that react to contact with prey. There are also snap active traps, using rapid modified leaf movements like a Venus flytrap to snag prey. Bladder-suction traps are found exclusively in plants called bladderworts. They create little negative pressure vacuums inside their traps. Pop open and suck the victim inside when the prey triggers it before snapping closes.

Passive traps force prey toward the plant’s digestive organ by having little inward-pointing hairs that keep prey from moving backward out of the trap. These unrelated plants have not only developed the same kinds of traps. But they’ve also evolved the same molecular mechanisms for digesting their prey. For example, the lineages of three different pitcher plants split more than 100 million years ago, probably well before they became carnivorous.

Each produced proteins originally used to defend the plants from attackers like fungi. But over time, all of those proteins became repurposed into digestive enzymes. Their function remained essentially the same, but changes occurred regarding where and how they were used. Fungi support their cell walls with a starchy polymer called chitin. Chitin is also the basis for arthropod exoskeletons.

So, proteins first used to fight fungal parasites eventually became chitinase. It is the enzyme in the digestive fluid of the pitcher plants that breaks down those crunchy exoskeletons. All three of these lineages have also evolved to use purple acid phosphatase, another enzyme, to absorb phosphate from their victims.

How botanical carnivory keeps popping up seems pretty well understood. But there’s still the question of why? It goes back to the idea of convergent evolution. All these different carnivorous plants are responding to similar environmental pressures.

Across the globe, they’re generally found in open, sunny places that have moist but nutrient-poor acidic soils. Many of them live in bogs or fens. But a plant has to get nitrogen and phosphorus somehow. In these habitats, botanical carnivory represents an evolutionary trade-off with both costs and benefits.

  • A carnivorous plant has two types of leaves: regular ones that photosynthesize and ones that have been modified into their particular kind of trap.

It means they have fewer photosynthesizing leaves than regular, non-carnivorous plants. So they have to live in places with lots of sunlight to maximize their ability to photosynthesize. Also, they have to make up the difference. Carnivory can only evolve when it benefits the plant more than investing in regular leaves, like when the soil lacks nitrogen and phosphorus.

Carnivorous plants will even stop being carnivorous, at least temporarily, if placed in nutrient-rich soil or don’t get enough water or light. As for what plant was the first to evolve this strange adaptation, we don’t know. Carnivorous plants are pretty rare, and they’re only found in certain kinds of habitats. So they’re less likely to fossilize than other kinds of plants that are more widespread.

The oldest reported fossils of carnivorous plants:

  • The Early Cretaceous Period of China.
  • The Late Cretaceous of the Czech Republic.

Beyond that, the only halfway-decent evidence of ancient carnivorous plants is pollen grains from the Paleocene Epoch of India. One fossil seed from the Eocene Epoch of Australia was destroyed after being photographed in a freak lab accident.

Evolution of carnivorous trapping mechanism

All known carnivorous plants are angiosperms with flowers that evolved about 135 million years ago. It is known that none of the currently living species can be any older than this. Plus, it is known that nearly all of the traps on carnivorous plants were originally regular leaves that have been heavily modified to catch animals. All plants can absorb nutrients through their leaves, which is known as foliar feeding.

Carnivorous plants build on this basic function. A standard hairy leaf can hold a small amount of water that small insects can sometimes drown inside. The plant can absorb the nutrients using foliar feeding as the insect rots away and breaks apart.

Proto-carnivorous plants, like carnivorous plants, rely on nutrients from sources other than soil but lack many advanced features. One of the best examples of proto-carnivorous plants is the bromeliads which is the family that contains pineapples. Many species in this family catch water in their crown of leaves, sometimes with whole ecosystems of animals living inside them, like frogs and insects.

The animals that live in bromeliads bring nutrients to the plants in their droppings and die. But at least two species of this group are carnivorous and will break down any prey inside them. It is known that they descended from the other family members, showing they would have gone through a proto-carnivorous stage before becoming entirely carnivorous. Most carnivorous plants would likely have gone through a stage before becoming truly carnivorous.

When carnivorous plants became more specialized for capturing and killing, the features that helped meat-eating plants catch and digest their food were often co-opted from common features among plants. Some carnivorous plants use nectar and bright colors to trick pollinating insects into their traps. The cocktail of chemicals carnivorous plants use to break down and digest their victims is related to those other flowering plants used to fend off pathogens.

For instance, many plants use an enzyme that breaks down chitin. This substance is found within the cell walls of the fungus. So they use this in defense against fungal infections. But Australian pitchers and other carnivorous plants have repurposed this enzyme to digest insect exoskeletons and chitin.

Another carnivorous plant that uses simple traps is the flypaper traps which use sticky leaves to catch prey. These plants also would have had a similar evolutionary process as pitcher plants. Instead of their leaves becoming more curved, they got stickier. Some group members have a pretty regular-looking leaf with a sticky surface for catching insects. In contrast, others are quite different from other plants, like sun juice covered in sticky hairs.

DNA studies show one of the most complicated and famous carnivorous plant traps. The snap traps descended from these simpler sticky leaf-trapped plants.

Carnivorous trap mechanism
Carnivorous trap mechanism
  • Venus flytraps are the most famous snap trap. But another aquatic plant that catches its prey like this found in Europe is the water wheel.

Venus flytraps are so highly modified. Seeing how they came from a regular non-carnivorous plant is more challenging. But a venus fly trap is analogous to the leaf of any other plant where the trap hinge is the leaf’s vein. The sides have folded up to create the shutters. They have been so heavily modified.

  • Its leaves are divided into two lobes hinged along the midrib. Small trigger hairs on each lobe are susceptible to touch. When these hairs are bent, ion channels at the base of the hairs open. It generates an electrochemical signal, which changes cells in the midrib and allows the lobes held under tension to snap shut. The leaves shut in two phases. At first, the closure is fast but only part of trapping larger prey. The insect is digested over the next five to 12 days, after which the flytrap will reopen.

Flypaper carnivorous plants will also fold up when they have trapped their prey to stop them from escaping. They are slow. It is known that this was the beginning process behind the evolution of the highly specialized snap traps. The advantage of a snap trap over a sticky surface is that the shutters protect the prey from being stolen by larger animals. Due to the increased leverage of a snap trap, they can catch larger animals which will give.

More nutrients, for instance, most flypaper traps catch small flying insects. Despite the name, Venus flytraps more commonly trap large animals like spiders and millipedes. So the first snapping trap would have started with sticky leaves. They would have adapted larger and more concave leaves to catch larger prey. That can close quickly to reduce the chances of the stronger and larger prey escaping.

As the snapping mechanism becomes faster and stronger, the stickiness of the leaf would be less relevant in capturing its prey. The most complicated trapping mechanisms out of all the carnivorous plants are deployed by the Utricularia, better known as the bladderworts. These plants are found worldwide and in many habitats but are often aquatic. Their small flowers are often quite eye-catching. Their bottom half-hidden under the water or the soil possesses one of the most deadly and complicated traps of any carnivorous plant.

They have bladder-like traps that suck up their prey to be digested. Some species can catch animals as large as tadpoles. The mechanism behind this trap is so complicated. It is puzzling to think how a structure like this could have evolved. But one member of this group of plants may hold the answer Utricularia multi-feeder found in Australia is a Utricularia.

That has traps similar to any other member of the group. Only their traps don’t suck. Instead, it works more like a lobster trap where the prey will be funneled further and further into the trap but can’t get out once it’s in.

So carnivorous plants may seem complicated and different. But their elaborate traps are simply the product of repurposing, modifying, and warping simple functions nearly all plants possess. By doing this, they could survive and sometimes thrive where other plants could not previously grow.

More Articles:

Why Do Animals Keep Evolving Into Crabs?

How Plants Caused First Mass Extinction?

How Polar Bear Evolved?

How New Genetic Information Evolve?

The Turtle Shell Evolution


Clarke CM, Bauer U, Lee CC, Tuen AA, Rembold K, Moran JA (October 2009). “Tree shrew lavatories: a novel nitrogen sequestration strategy in a tropical pitcher plant.”
Chin L, Moran JA, Clarke C (April 2010). “Trap geometry in three giant montane pitcher plant species from Borneo is a function of tree shrew body size.”
Clarke C, Moran JA, Chin L (October 2010). “Mutualism between tree shrews and pitcher plants: perspectives and avenues for future research.” Plant Signaling & Behavior.
Darwin C (1875). Insectivorous plants. London: John Murray. Cross AT (2019). “Carnivorous plants.”. A Jewel in the Crown of a Global Biodiversity Hotspot.
Givnish TJ (January 2015). “New evidence on the origin of carnivorous plants.” Proceedings of the National Academy of Sciences of the United States of America.

Julia Rose

My name is Julia Rose. I'm a registered clinical therapist, researcher, and coach. I'm the author of this blog. There are also two authors: Dr. Monica Ciagne, a registered psychologist and motivational coach, and Douglas Jones, a university lecturer & science researcher.I would love to hear your opinion, question, suggestions, please let me know. We will try to help you.

Leave a Reply

Your email address will not be published. Required fields are marked *