Greetings, curious minds, and evolution enthusiasts! Have you ever marveled at the incredible diversity of life on our planet, from the tiniest microbes to the towering trees and majestic animals? This rich tapestry of life didn’t come about by chance; it’s the result of millions of years of evolution, nature’s way of adapting and thriving.
Genetic changes that lead to the creation of a new species are known as evolution. Life has evolved for over 3.5 billion years, and species rarely survive beyond tens of millions of years. About 300 million years ago, plants were able to colonize dry uplands. Whole groups of organisms have evolved and become extinct. Some fossils from mass extinction events reveal a pattern of rapid bursts of evolution.
Evolutionary innovations have allowed new niches and new groups to diversify into them. Additionally, mate change, changing sea levels, extensive volcanism, and plate movements have affected evolution in different places.
With the Origin of Species, Darwin transformed science and provided a mountain of evidence for the evolution of life by natural selection. But there were also holes in the evidence, which have been filled in many times. Let’s go over a quick summary of the main types of data that illustrate how evolution happens. The first of these types involves direct observation.
We’re going on a fascinating journey back through time and into the heart of biology to explore the mechanisms of evolution. From natural selection to genetic drift and mutation to gene flow, we’ll uncover the forces that have shaped our living world.
So, put on your explorer’s hat and ready your curiosity because we’re about to delve into the wonders of evolution and discover how life on Earth has become the astonishing spectacle it is today. Are you ready to unlock the secrets of evolution? Let’s set off on this evolutionary adventure!
What is Evolution?
Evolution is any change in alleles’ frequency in a gene pool, which causes specific alleles to become more frequent while others become less frequent. Evolution is a scientific theory that plants and animals change genetically over time, modifying and adapting over generations according to the demands of the earth’s changing environments. This biological process includes reproduction, diversification, and adaptation.
Charles Darwin formulated his theory of natural selection in 1839, called the process of descent with modification. The descent from a common ancestor with the improvement of biological characteristics. Over time, natural selection is a key evolutionary process brought about by the survival of organisms best suited to their local environments, the survival of the fittest.
Evolution is fueled primarily by the processes of selection and competition. These act upon species that respond by having offspring that contain inherited variations. Most species produce more offspring than survive; natural selection favors and promotes the fittest’s survival. Those best adapted to the physical and biological environment, such as a particular climate or predator escaping. These survivors select other similarly adapted mates to produce offspring that survive in more significant numbers to breed new generations.
Without adaptability, life would never have moved out of the ocean. However, even adaptability is primarily a result of cause and effect. Life cannot predict a future need. Instead, new traits are produced in individuals by genetic variation and mutation.
The fossil record shows that throughout the Earth’s history. Species have evolved and died out. The majority of species have developed and died out. Most evolved species are extinct, but their genes survive in living descendants. Speciation is how new species evolve from an ancestral species and can be brought about in many ways.
Additionally, various regional and global environmental catastrophes have impacted life and resulted in mass extinctions. At the end of the Permian times, the largest of these caused 96 species on earth to die, yet life recovered.
What are the mechanisms of evolution?
We will talk about the remaining mechanisms of evolution, selective and non-selective. There are five mechanisms of evolution. Natural selection, sexual selection, artificial selection, genetic drift, mutations, and gene flow. Evolution is referred to as macro and microevolution.
Macroevolution: Macro means big, so when changing overtakes a long scale time. Dinosaurs share a common ancestor that gave rise to many different species or types of dinosaurs. It takes a very long time to occur.
Microevolution: Micro means small, like a species of insects. Those small-scale changes in allele frequency in the population.
Selective Mechanism
The selective mechanism has three types of selection.
- Artificial selection.
- Natural selection.
- Sexual selection.
Artificial selection
Artificial selection is when humans choose which organisms reproduce and pass their genes to progeny. Examples:- Cows, dogs, horses, innumerable fruits, and vegetables. Artificial selection requires only two of the three criteria. There is variation in the population, and the trait is heritable. The difference with artificial selection is that humans, not nature, decide which traits are passed on.
Artificial Selection is used in agriculture and animal breeding all the time. People want cows that produce the best milk, so they don’t breed low milk production. Likewise, horses have various breeds for various jobs, and breeders use artificial selection. All the different breeds of dogs are a result of this as well.
Sexual selection
Darwin was also the first to evidentially articulate the idea that some organisms choose mates based on, in a sense, beauty. This is sexual selection. Peahens will, for instance, choose peafowls with brightly colored tail feathers. Also, this has been happening for so long that modern peafowls have evolved extremely extravagant feathers.
Sexual selection is an adaptation that makes an organism more likely to find a suitable mate. Continual sexual selection has given rise to sexual dimorphism, a difference in secondary sexual characteristics between a species’ males and females. It is certainly evident in humans. But it takes many other forms, like the brightly colored male peacock. Males of different species perform a variety of mating. These are examples of intersexual selection, choosing mates based on specific traits that indicate healthy genes, like bright colors.
Natural Selection
Darwin first formally described natural selection in his 1859 book On the Origin of Species. He concluded that nature selects which organisms pass traits on to their progeny. He reasons that there was no hand guiding this descent process with modification but instead thought that organisms that were fit enough to survive to reproduce and passed on their traits.
Natural selection guides evolution, as this can pertain strictly to variance in a trait, like the neck length for giraffes. Genetic drift highlights how chance events, like the random elimination of homozygous organisms for a particular trait. It can cause the gene pool of a population to skew in a specific direction gradually. It is magnified when a few organisms become isolated from a larger population. Any deviation in this smaller group will be more statistically significant than expected. This is called the founder effect.
Similarly, a sudden environmental change, like a fire, drought, or flood, can produce a bottleneck effect, dramatically reducing the population. By chance, specific alleles’ frequency may change suddenly due to the random nature of the survivors’ alleles. So, genetic drift is significant in small populations. It can lead to a random change in specific alleles’ frequency, leading to a substantial loss in genetic variation within a population.
Nature is blind, and it works with the traits at hand. It can’t build new features from scratch. When land-bound creatures evolve into flying ones, they don’t sprout wings. Their arms slowly become wings over many generations and have many intermediate characteristics.
Flaws in structures like the giraffe’s neck are the illogical pathway. With its blind spot and other flaws, the human eye shows how nature built upon what was already there to get to something workable, though imperfect. So many factors are simultaneously at play, but the result is a vast ecosystem of organisms well suited for their environments.
Natural selection can change a population differently depending on the environmental change. 3 selections can describe it.
- Directional selection.
- Disruptive selection.
- Stabilizing selection.
Directional selection
In directional selection, natural selection takes place in a single direction. There’s a shift in one direction. As a result of natural selection. What happens if a beetle population moves into a new environment with dark soil and vegetation? The dark beetles are going to blend in with the medium-colored beetles.
The light-colored beetles are especially going to stand out. Suppose they stand out. That makes them more easily seen and eaten by predators. So, the dark green beetles survive. They finish the sentence and pass those dark green beetle jeans to the next generation.
Stabilizing selection
Stabilizing selection is selection towards the middle trait and against the extremes. Imagine our original population has light green, medium green, and dark green beetles. What happens if that beetle population moves into a new environment covered in medium green-colored ferns? It would not benefit from being dark green. It would not help to be light green. The medium green will blend in, making you more likely to survive, reproduce, and pass on those medium green jeans.
Disruptive selection
It is the opposite of what you have selected against the middle and instead selection towards both extremes. Imagine our original population of green beetles, dark green beetles, and medium green beetles. What happens if that beetle population moves into a new area covered in light-green moss and dark-green shrubs? The dark green beetle will blend in with the dark green shrubs.
The light green beetle blends in with the light green moss. They survive and reproduce. Also, the medium green beetles are now going to stand out. They don’t blend in with either of those things. So they’re going to be more likely to get eaten. It means they will decrease gradually.
Speciation
A species is a member of the same organism that can reproduce and produce fertile offspring within its natural habitat. That is speciation, the formation of a new species through evolution. Scientists wanted to see this happen in a lab. A team of scientists took fruit flies. They took some fruit flies and split them into two groups.
In one tank, they fed them starch. On the other, they fed them maltose. So all they changed was their food source! They let the fruit flies eat the food over a couple of weeks. They went through many different generations and let them reproduce over several generations in a very short period.
What they saw was a change in color because of the food source. It makes sense that their color changed. But surely not enough genetic changes have occurred that they would be entirely new species. They put the two populations together now in a tank. They let them do their fruit fly thing, and they all tried to mate because that’s what fruit flies do. They found that only the fruit flies with the same food source could reproduce new offspring.
Two theories explain the rate of speciation. The interaction of a population with its environmental changes can lead to different speciation rates. The two rates of speciation theories are called gradualism and punctuated equilibrium.
Gradualism – The gradualism model says species diverge very slowly and that those changes occur in tiny steps until many generations later. You typically see this in huge populations where the environment is very stable.
Punctuated equilibrium – It says that species diverge very rapidly and that the change occurs in bursts, and then it’s followed by long periods of no change. It typically occurs in small populations where they have rapidly changing environments. So, some environmental change causes a huge burst in change in the population. Then it might be a long time since there’s no change.
Natural selection patterns
Evolution can follow several different patterns depending on the pressures put on the environment. It is three types. They are:
- Divergent evolution.
- Convergent evolution.
- Coevolution evolution.
Divergent evolution: It explains homologous structures and why structures are similar in different organisms. It suggests that they have a recent common ancestor and that they’ve diverged from one another.
Convergent evolution: Two unrelated species evolve traits and become similar because they live in similar environments. For example, fish in the Arctic and Antarctic have evolved and frozen proteins in their blood for a long time. Scientists thought they must have evolved from the same ancestor.
But when scientists studied those antifreeze proteins, they realized that they were different from one another. It suggests that they evolved that trait utterly separate from one another because of the cold water. The environmental stressor was the same.
Co-evolution: The simultaneous evolution of two unrelated species because of their interaction and relationship. For example, bats and flowers in tropical regions. The flowers are light in color and smell fruity because the bats can see and smell them. The flowers that had those traits survived and reproduced. The bats pollinated them. The bats evolved to have these long, slender muzzles, allowing them to get the nectar in these different flowers.
Natural selection causes enough changes to accumulate to develop an entirely new species.
Non Selective Mechanism
In minimal populations of organisms, the founder effect and genetic drift can greatly magnify certain traits. For example, a small population of penguins moved to a place uninhabited by other penguins they could mate with.
Those penguins were to reproduce and grow in population size, and the founder effect might cause one or more genes to predominate in a population. It causes a loss of genetic diversity. Genetic drift is similar to aging and does not necessarily have any benefits that may predominate in a population due to the random sampling of genes.
For example, among Amish communities in Pennsylvania, Ellis’s crippled syndrome has become very prevalent because the colony members in 1744 had the syndrome. After years of interbreeding, the syndrome has spread throughout the population. It is important to remember that the mechanisms of evolution with selection in the name aren’t random.
Nature or humans select organisms based on their traits. The process of natural selection is very non-random. The founder effect and genetic drift, on the other hand, are somewhat stochastic.
Genetic drift is the change in the gene pool of a small population.
There are two types of genetic drift.
- Bottleneck effect.
- Founder effect.
Bottleneck effect: It happens from a natural disaster by chance, reducing the population size. Earthquakes and volcanic eruptions are great examples. It changes the population size.
Founder effect: This one results from a small number of individuals’ colonization of a new location.
Non-random mating: The non-random in the population will change, increasing the frequency of specific alleles.
Mutation: Mutations happen because the organism needs something to support its needs. Mutations are not always harmful or beneficial sometimes. It could be neutral, meaning they don’t do any harm or they don’t do any benefit. Mutations occur randomly and allow the organism to survive better. It also happens to the gametes over an organism. It forms in the egg because that’s the only mutation that can pass down to other organisms.
Evidence for evolution
Whenever we try to use drugs to kill pathogens, like certain bacteria, a drug-resistant strain is inevitably evolving and increasing quickly, as it is immune to the drug. The resistance is not a product of evolution. It comes about by blind chance, but the proliferation of the resistance is a natural selection product. The drug won’t kill the lone resistant bacterium, while the other bacteria will. Eventually, all the bacteria in that vicinity will be descendants of the initial mutant and, thus, resistant to the drug.
Adaptation occurs with short-lived animals like bugs. When certain insects modify their food sources, their appendages change over generations to better suit their surroundings. Humans invented the strains of bacteria capable of metabolizing nylon in the 20th century. Thus, evolution by natural selection is not relegated to conjecture.
Homology
Another source of evidence for evolution is the homology between species. Homology is a word that refers to structural similarities in certain species as a result of common ancestry. Look at the arms and legs of humans and any other mammal, even whales and bats. They have remarkably similar bone arrangements, even though one is used to walking, swimming, and flying.
These homologous structures are entirely consistent with the idea of a common ancestry for all mammals. All vertebrates, including humans, have a small tail early in embryonic development. This is easily explained by considering that all vertebrates have a common ancestor.
Vestigial structures
When anatomical features are not helpful to the organism, we call these vestigial structures, which we now understand are remnants of ancestors’ features. These evolutionary relics include pelvis and leg bones in snakes and the remnants of eyes in blind fish that live in pitch-black caves.
Molecular homology
When phenotypes don’t match, there are still genotypes that link. Even humans and bacteria show how incredibly dissimilar species must still have a distant common ancestor. It is why all life is on a single evolutionary tree, the tree of life.
Fossil record
We know what organisms existed and when which helps us fill in the gaps between existing species. The fossil record helps assign dates to the emergence of different species, including homo sapiens. Countless times, fossils have cropped up that provide missing links between various classes of organisms.
Archaeopteryx demonstrated a link between dinosaurs and birds. Other fossils are intermediates between land mammals and ocean mammals like whales and dolphins. With each discovery, the tree of life grows more consistent with evolution by natural selection.
Biogeography
The study of how different species are distributed around the globe. The continents move slowly over millions of years, with specific areas connected in the past that aren’t any longer.
Genetic variance
Genetic variation makes evolution possible. Any novel trait an organism can exhibit must result from a change in gene expression products resulting from an alteration in the DNA sequence. Natural selection guides this process. Genetic drift and gene flow are other ways that genetic variation can propagate.
First, let’s recall that many phenotypic traits are determined based on two alleles: homozygous or heterozygous if mutations occur in the introns of a gene or the exons in such a way that the mutation is silent. It will not produce any change in the organism. A change in a single base pair can produce novel proteins by the point of mutations. If this mutation occurs in cells that produce gametes, this change will be passed on to offspring. Typically, this will result in a less effective protein and harm the organism.
If this is the case, the new allele will be removed by natural selection unless it is recessive, which may increase. There are so many genetic diseases that stem from recessive alleles. However, some mutations result in neutral variation, where the change doesn’t give the organism an advantage or disadvantage.
This is one way that differences can accumulate over time because there is no mechanism to weed out these benign mutations. However, a mutation will bestow the organism with a survival advantage. It is rewarded with a higher likelihood of survival and reproduction.
Genetic variation in the gene pool will always occur. But there must be some external factors present for evolution to occur. Mutations will only increase statistically significantly if the organism receives a higher probability of survival and procreation.
We can use the Hardy-Weinberg equation to determine whether evolution occurs in a population. When evolution is not occurring, all alleles and genotypes will reoccur with the same frequency, a situation we call Hardy-Weinberg equilibrium.
Hardy-Weinberg equilibrium, P² + 2PQ + Q² = 1, P + Q = 1.
For a particular trait with a dominant and recessive allele, We represent the dominant allele frequency with P and the recessive allele frequency with Q, So P + Q = 1.
The three genotypes must also add up to one. So if we make a Punnett square, we should expect that the frequency of homozygous dominant, or P squared, plus twice the frequency of heterozygous, or PQ, plus the frequency of homozygous recessive, or Q squared, will add up to one, P² + 2PQ + Q² = 1.
These are the only three possible genotypes, and P and Q values are used to get each genotype’s probabilities. These numbers will remain constant if there are no mutations. Natural selection is not a factor; the population size is large, and there is no gene flow. These parameters are characteristic of a system in Hardy-Weinberg equilibrium.
In such a case, measuring the frequency of any genotype allows calculating the others, as they must add up to 1. But when one of these assumptions no longer applies, the population evolves. The direction of the fluctuation can offer clues as to the mechanism at work.
Gene flow
On the other hand, gene flow occurs because of the movement of fertile organisms. Gene flow is the movement of an individual or the gametes from one place to another. It’s also known as migration. This way, the influx of alleles into a population can cause allelic frequencies to change from generation to generation. It is the very definition of evolution. Like many birds, alleles are transferred in or out of the gene pool due to this behavior when looking at species with migratory habits.
Gene flow even occurs in humans, as it has become increasingly common for people to move across the globe. So mating between different populations is typical, whereas it was rare even a few hundred years ago. But natural selection is the only guiding hand to evolution that is not random. It is predicted that beneficial adaptations will be passed on, slowly producing brand-new species. It can work in a variety of ways.
These mechanisms are different ways evolution proceeds, all encompassed under the term microevolution. It means evolution below the level of species. For example, Galapagos finches adapt to the available food source without the Finch population becoming a new microevolution species. Many creationists will agree that this evolution exists, noting the variation in breeds of dogs or horses. But they categorically refuse to acknowledge that macroevolution happens, too.
There is also intrasexual selection, typically among males, who, in many species, will fight over females, including humans, in ritualized displays. Apart from sexual selection, there are forms of balancing selection whereby variation in the genome is preferred, such as the heterozygous advantage. It is strict regarding the genotype and not any particular phenotype. Selection is related to avoiding predators, matching climatic conditions, and other factors. But with all this, we must recognize the limitations of natural selection.
Importance of Evolution
Evolution helps us to understand the history of life. Human biology is only scratching the surface of why studying evolution is essential. Animals don’t have thumbs! Humans and primates are the only animals to have opposable thumbs. It was useful when humans developed and used tools. This trait has come from evolution. There have been millions upon millions of species past and present.
Yet natural selection requires death, extinction, random variation, and non-random selection to innovate. It is a process that takes an arduous amount of time – small changes, generation after generation, and ultimately epoch after epoch. The Latin name for our species, Homo sapiens, means “wise man,” an arrogant name to give yourself. But it isn’t “wise” that has led to the massive rise of complexity in human societies over the past 250,000 years.
The importance of evolution:
- The survival string will develop, and this creates a strong species.
- The body structure will develop to live longer, and the stronger can reproduce more.
- DNA mutation and natural selection can create more variant species that also create diversity.
The theory of Evolution doesn’t tell us exactly how life began on Earth, but it helps us understand how life goes on. It also helps us understand how modern creatures adapt and change today.
We’ve traveled from the molecular level, where mutations spark change, through the vast landscapes where natural selection and genetic drift play their roles, to the global gene flow exchanges connecting and diversifying life. This exploration not only deepens our understanding of the natural world but also inspires a profound respect for the complexity and resilience of life.
We hope this adventure has ignited a spark of curiosity and wonder in you, encouraging you to look at the living world with new eyes and appreciate the evolutionary marvels that surround us. Remember, the story of evolution is the story of life itself, constantly unfolding and revealing new mysteries to be discovered. Until our next scientific sojourn, keep pondering, questioning, and marveling at the wonders of evolution. Happy exploring, fellow seekers of knowledge!
More Articles:
What Is Evolutionary Fitness With Explain
What Is Founder Effect On Genetic Drift
Evolution Of Earth Step By Step
Evolution Of Life On Earth Timeline
What Will Humans Look Like In 100 Years?
References:
“Evolution Resources.” Washington, DC: National Academies of Sciences, Engineering, and Medicine.
Futuyma & Kirkpatrick, Chapter 4: Mutation and Variation
Voet, Voet & Pratt, Chapter 1: Introduction to the Chemistry of Life
Lewontin, Richard C. “The Units of Selection.” Annual Review of Ecology and Systematics.
Futuyma & Kirkpatrick, Chapter 1: Evolutionary Biology
Table of Contents