What Is Evolutionary Fitness? (Example, Problem, Explain)

What is evolutionary fitness

Hey there, evolutionary explorers and fitness fanatics! Ever wondered what “survival of the fittest” really means beyond the gym? You’re in the right place! Today, we’re diving into the fascinating world of evolutionary fitness, a concept that goes far beyond physical prowess to encompass the ability of organisms to survive, thrive, and pass their genes to the next generation.

Evolutionary fitness theory explains how modern organisms evolved from their ancestors over long periods. Then this is one of those big things. Evolution believes that the earth has been around for significantly long periods. So organisms change over time, and mutations are the ultimate source of all change.

Mutations are going to be variations that exist in populations. Also, mutations will be changes in the DNA sequence. Some mutations ultimately become more prevalent. So more abundant is another bird for that if they improve the fitness of an organism. Evolutionary biologists work closely with many similar disciplines, and people might often call themselves paleontologists or evolutionary ecologists.

They usually study how a single trait, like a brain or a nervous system, can change between organisms or over time. They also study the genetic basis for different characteristics and how other species vary genetically or genomically. For example, it’s often quoted that around 15 or 20 different genes are involved in human skin color. Each of them has different alleles, which results in a wide variety of skin colors.

Lace-up your sneakers for a different kind of workout, and let’s embark on an intriguing journey through time and biology. We’ll explore how nature’s ultimate endurance test shapes the diversity of life on our planet. Ready to flex your brain muscles? Let’s get evolutionary!

What is Evolutionary Fitness?

What was Darwin working with when he was building his case? In South America, he found giant sloth fossils and was used to seeing sloths as tiny creatures. But, when he saw the structure, it looked like a sloth except much bigger. So fossils were a vast finding for him. DNA is molecular evidence of evolution.

If you compare DNA from a chimp to a human, you’ll find it roughly 98% similar. It’s an observation that’s proven true that organisms change over time through mutation through adaptation to their environment. Evolution is natural selection, which means selecting an organism based on its fitness when a mutation helps an adaptation organism.

Darwin discussed a lot about evolutionary fitness or survival of the fittest. Fitness is not the fastest or lifts the most weight. An organism can merely reproduce and create viable offspring. For example, If organism “A” finds a mate and makes babies, organism “B” does not. Then, A has more fitness biologically than organism “B.”

Suppose organism “A” creates awesome babies and survives to make lots of their babies. Organism “B” babies don’t do that so much again. Organism “A” is more fit. Also, the traits allow them to become fitter and have viable offspring that make them fit. Viable offspring are offspring that live to maturity and can reproduce themselves.

So Fitness is how well you make children and how your children make more. Some mutations become prevalent in the “A” population because they improve an organism. Fitness is then called adaptations.

There are a couple of types of adaptations:

  • Physical adaptations like color, eyesight, defense mechanisms, etc.
  • Behavioral adaptations like hunting behavior allow for catching more prey. Grouping organisms in hurt or pack versus being solitary is group behavior altruism. When you think of altruism, you should think of being selfless and doing something nice for others. That is a behavioral adaptation.

Formula: Fitness equals the multiplication of survival percentage with the average number of offspring.

Fitness (W) = Percentage of survival × Average number of offspring

Evolutionary fitness has to do with the ability to survive, and the idea is to have adaptations or survive. Darwinian Fitness’s statement has to do the best set of adaptations. In other words, how much does any given individual contribute to the gene pool?

Gene flow brings in new genes or takes away genes from the population. It depends on how much pressure the environment puts on those genes. Then, there’s also the concept of relative fitness. It compares the fitness of different members of the same species and tries to understand how much each is likely to contribute to the next generation.

Fitness has to do with how much it contributes to the gene pool. Then, fitness has to do with how much it will contribute to the next generation of the gene pool. Also, it has to do with having the best adaptations and increasing the chances of having a longer lifespan, reproducing faster or more. They also succeed in the offspring; otherwise, they live to do precisely the same.

Evolutionary fitness is all about the fittest, who survive through natural selection. Natural selection has something to do with artificial selection. It’s like the same thing an official selection is that humans do. Populations tend to grow exponentially, but the thing is that environments have limited resources.

So, not all population members get to live, and they will struggle to survive. The more differences among them will make the difference, and those with the best adaptations will live longer. They have more children than survive the same. Therefore, they will contribute more to the next generation and become more common in the gene pool. Genetic drift causes changes in the population.

Selection works overtime, leading to species differentiation across populations. Selective pressure animals compete for a lot of things. They compete for their niche or their roles in the environment.

Therefore, there will be fighting, and the strongest will occupy that niche. So that’s the idea of the actual niche versus the realized niche. There’s also sexual or reproduction pressure to have a better chance of carrying the offspring. All of these things will lead to sexual selection.

Animals have tolerance levels and can’t expand beyond a specific niche. So they won’t be able to live if the environment changes too fast. They compete for mates, shelter, and all kinds of different things, and that’s true even in humans.

Evolutionary Fitness Psychology

Evolutionary fitness in psychology refers to the idea that certain psychological traits and behaviors have evolved because they provided an advantage in survival and reproduction to our ancestors. This concept is rooted in the theory of natural selection, which posits that traits that enhance an organism’s ability to survive and reproduce are more likely to be passed on to subsequent generations. In the context of human psychology, evolutionary fitness helps explain why certain behaviors, emotional responses, and cognitive processes are common across cultures and societies.

Key Aspects of Evolutionary Fitness in Psychology

Survival Strategies: Behaviors that increase an individual’s chances of survival in the ancestral environment are seen as evolutionarily adaptive. For example, fear responses to dangerous situations or unfamiliar stimuli could help avoid threats, thus increasing survival odds.

Reproductive Success: Traits that enhance an individual’s attractiveness to potential mates or improve parenting skills contribute to reproductive success. This includes a wide range of behaviors, from mate selection preferences to social bonding and cooperation.

Social Behaviors: Humans are inherently social animals, and evolutionary psychology suggests that our ancestors benefited from living in groups. Traits that facilitated social cohesion, such as empathy, altruism, and the ability to read social cues, would have been advantageous for mutual support and protection.

Cognitive Abilities: Cognitive traits that improved problem-solving, memory, and decision-making would have been selected for their contributions to survival and reproductive success. This includes planning, understanding complex social dynamics, and learning from experience.

Emotional Intelligence: The capacity to understand and manage one’s own emotions, as well as recognize and influence the emotions of others, would have had clear advantages in social groups by facilitating communication, cooperation, and conflict resolution.

Example of Evolutionary Fitness

Consider many frogs sitting on logs in their habitat. Let’s assume these are the same frog species that breed with each other and pass down their DNA to their offspring. Naturally, there is variety in these frogs. Some of these frogs are darker green, maybe almost brown. Some of them are lighter green.

There is a variety of traits even in the same species. So, back to the log. Do you know what else is in this habitat? Predators! The predators find that the lighter frogs are much easier to see in this habitat than the darker frogs. So, in this particular environment, the darker frogs have an easier time surviving and potentially more fitness if they breed.

Evolutionary fitness

In the biological sense, Fitness is determined not by how long they live but by how many offspring they have. These darker frogs pass down their DNA to their offspring so that the new baby frogs will have DNA from their parents. The lighter frogs are selected since they are easier to see in this habitat. Over an extended period, you could expect to see a higher frequency of darker frogs. It could even result in darker frogs in this area if it continues for a long time.

Evolution changes over time and could take place because natural selection has occurred. Natural selection is a mechanism of evolution. It doesn’t necessarily mean that the allele for lighter color is gone completely.

The allele could be recessive and carried within the population. There are opportunities for variety because of processes like crossing over and mutations. But darker frogs will remain more fit if this habitat and predators do not change. Variations or mutations are not things that a frog can “will” itself to have.

Mutations and variations are random. It’s possible they might not affect an organism’s fitness. So, in that case, the genes are being passed on if that organism happens to reproduce. Or variations and mutations could be harmful.

If they are negative and negatively affect the organism’s fitness, that trait will not be passed down. But if they positively affect fitness, that frog may have more babies than average because that trait helps them survive and reproduce. More babies will receive the passed those genes. Over time, that trait that is an advantage will be more frequent in the population.

Problem And Solution

Problem: Assume 50% of dark moths survive, each producing an average of 10 offspring, while light moths have 80% survival and produce an average of 0.9. Solve for absolute fitness of both phenotypes.

Solution: Multiply those numbers! So, the fitness of the dark moths would be,

W (Dark) = 0.5 × 10 = 5
W (Light) = 0.8 × 9 = 7.2

Light color moths have a higher fitness rate. Its survival rate is higher and has
roughly the same reproductive rate.

Relative fitness is the reproductive success of an organism compared to the fittest.

For light moths, the relative fitness is 1.

Relative fitness of light moths = 7.2/7.2 = 1
Relative fitness of dark moths = 5/7.2 = 0.69

The dark moths are 69% as fit as the standard light moths.

Unfitness of the dark moths = 1- 0.69 = 0.31, So 31% of organisms are not surviving.
Unfitness of the light moths = 1 – 1 = 0, No unfitness of light moths.

This is also called the selection coefficient, which is denoted by S.

Slection coefficint, S = 1 – W

Darwin coined the phrase descent with modification.

Every species, living or dead, must have descended by reproduction from pre-existing species, and that species must change over time. – Darwin

Alfred Wallace came to a similar conclusion to Darwin. Darwin delineated the necessary parts of natural selection that drove evolution. There are four main parts. The first is overproduction. More offspring are produced than can survive. It creates some competition. Then, there must be genetic variation; individuals have different traits. It is important for natural selection because traits must be selected from the existing variety.

There is a struggle to survive. Animals with adaptations may have better survival than those who do not. Then, differentially reproduced animals with the best adaptations may survive and reproduce in natural selection. Fitness is ultimately measured by whether the genetic material is passed on to offspring or not. If an individual has lots of viable offspring, they’re fit. They’re unfit if they have no offspring because their genes are gone from the population.


We’ve journeyed beyond the surface of physical strength, delving deep into the essence of survival and reproduction in the natural world. It’s a concept that challenges us to view life through a broader lens, appreciating the complex strategies organisms employ to ensure their legacy endures through the ages. We hope this exploration has not only piqued your curiosity but also provided you with a deeper understanding of the forces that drive the diversity and resilience of life on Earth.

Thank you for joining us on this enlightening adventure. Until our next foray into the mysteries of nature, keep observing, keep questioning, and never stop marveling at the wonders of evolutionary fitness. Stay curious, stay inspired, and continue exploring the incredible tapestry of life surrounding us.

Read More:

What Are The Mechanisms Of Evolution On Earth

What Is Founder Effect & Genetic Drift

Mechanism Of Chemical Evolution

Human Hair Evolution

Evolution Of Life On Earth Timeline

References:

Wassersug, J. D., and R. J. Wassersug. Fitness fallacies. Natural History 3:34–37.
Maynard-Smith, J. Evolutionary Genetics ISBN 978-0-19-854215-5
Hartl, D. L. (1981) A Primer of Population Genetics
Kimura, James F. Crow, Motoo. An introduction to population genetics theory.

Leave a Comment

Your email address will not be published. Required fields are marked *